

2012 Marking Scheme

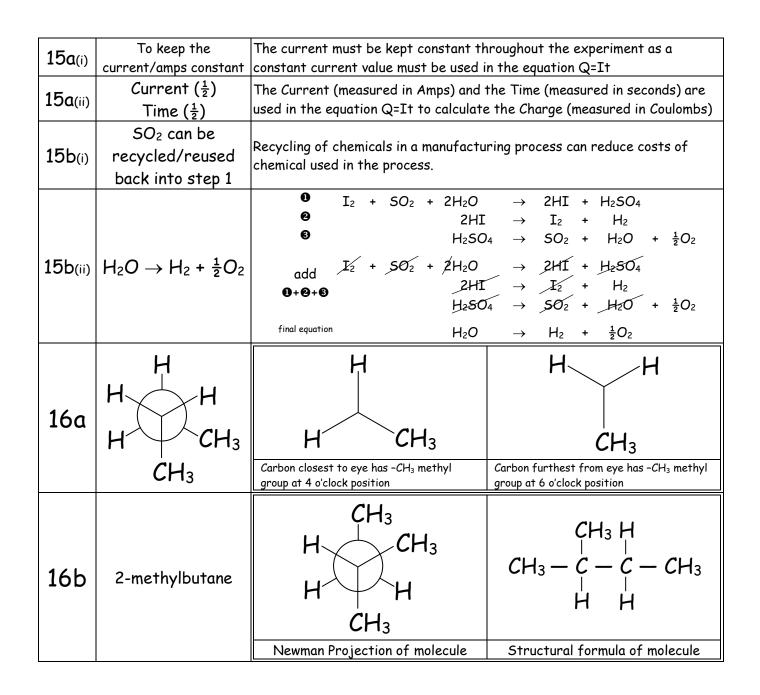
Grade Awarded	Mark Required (/100)	% candidates achieving grade
A	75+	31.4%
В	62+	25.2%
С	49+	22.4%
D	42+	9.3%
No award	<42	11.7%

Section:	Multiple Choice		Extended Answer		
Average Mark:	27.3	/40	36.4	/60	

	2012	2 Hi	gher Chemistry Marking Scheme
MC Qu	Answer	% Pupils Correct	Reasoning
1	D	76	Isotopes have <u>same</u> Atomic number Number of protons but <u>different</u> Mass number Number of neutrons
2	С	55	Reaction Conclusion (i) W is the least reactive as it is the only metal which doesn't react with acid (ii) Z is most reactive as it is the only one not reduced when heated with carbon (iii) X is more reactive than Y as X displaces Y from a solution of Y nitrate
3	D	33	 A Neon atoms are neutral and not positively charged B Fluoride F⁻ ions are negatively charged C Sodium atoms are neutral and not positively charged D Aluminium Al³⁺ ions have electron arrangement 2,8 and are positively charged
4	С	58	 ☑ A sodium carbonate is soluble ∴ no precipitate is formed ☑ B potassium chloride is soluble ∴ no precipitate is formed ☑ C magnesium carbonate is insoluble ∴ precipitate is formed ☑ D potassium sulphate is soluble ∴ no precipitate is formed ☑ D potassium sulphate is soluble ∴ no precipitate is formed
5	В	62	0.8mol of H₂ remaining ∴ 0.2mol of H₂ has reacted H₂ + I₂ → 2HI 1mol 2mol 0.2mol 0.4mol
6	D	79	SA Activation Energy E_a is not altered by changes in temperature B The Enthalpy Change ΔH is independent of the temperature it takes place at C Activation Energy E_a is not altered by changes in temperature D Increasing temperature means more collision with energy greater than E_a
7	С	65	CaCO3 + 2HNO3 → Ca(NO3)2 + H2O + CO2 1mol 2mol 1mol 1mol 1mol 1mol 0.05mol 0.1mol (0.1mol HNO3 required but only 0.08mol HNO3 available) 0.04mol 0.04mol 0.04mol 0.04mol 0.08mol 0.04mol 0.04mol 0.04mol 0.04mol
8	В	79	 Iteratively (available) <
9	A	44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
10	С	62	 A Electronegativity difference = 3.0 - 2.5 = 0.5 B Electronegativity difference = 3.5 - 3.0 = 0.5 C Electronegativity difference = 3.0 - 3.0 = 0 D Electronegativity difference = 3.0 - 2.2 = 0.8
11	D	78	 ☑ A Solid has high mpt and non-conductor as solid ∴ substance likely to be ionic ☑ B Solid conducts as solid ∴ substance contains metallic bonding ☑ C Solid conducts as solid ∴ substance contains metallic bonding ☑ D Substances with lower mpt and non-conductor as a solid is likely to be non-polar covalent and have only London dispersion forces between molecules/atoms
12	В	68	 A Hydrogen has a single covalent bond in the diatomic H₂ molecule B Helium is monatomic Noble Gas element in Group 0 C Nitrogen has a triple covalent bond in the diatomic N₂ molecule D Sulphur has covalent bonds within the S₈ molecule

13	В	88	⊠C Covalent Networks c ⊠D Covalent molecules c	cannot be found in comp an be elements (e.g. dian an be elements (e.g. H2)				
14	С	54	⊠B Benzene C6H6 is a no	n-polar hydrocarbon ∴ io ue to -OH bond) and pola	onic substances do not dissolve in it onic substances do not dissolve in it r ionic substances can dissolve in it it tetrahedral shape			
15	D	75		1mol gas = 6.02 O2 = 0.3mol gas = 6.02				
16	В	74	gfm N ₂ =28g ∴ no. ⊠B gfm CH ₄ =16g ∴ no. gfm CO ₂ =44g ∴ no ⊠C gfm CO=28g ∴ no gfm O ₂ =32g ∴ no ⊠D gfm HCl=36.5g ∴ no	gfm N2=28g \therefore no. of mol = $\frac{mass}{gfm} = \frac{14}{28} = 0.5$ molJB gfm CH4=16g \therefore no. of mol = $\frac{mass}{gfm} = \frac{32}{16} = 2$ molgfm CO2=44g \therefore no. of mol = $\frac{mass}{gfm} = \frac{88}{44} = 2$ molGfm CO=28g \therefore no. of mol = $\frac{mass}{gfm} = \frac{7}{28} = 0.25$ mol				
17	A	61	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	→ 2NO _{2(g)} 2mol 1mol 1vol 1litre				
18	A	90	区B Branch-chain hydroc 区C Cyclo-ring hydrocart	arbons are added to unle oons are added to unlead	nes needed for unleaded petrol eaded petrol to prevent autoignition ed petrol to prevent auto-ignition ed petrol to prevent auto-ignition			
19	С	94	 ☑ A Butane C₄H₁₀ is not t ☑ B Ethane C₂H₆ is not t ☑ C Methane CH₄ is the t ☑ D Propane C₃H₈ is not t 	he main constituent of bi main constituent of biogo	iogas as			
20	A	60		molecules are converted addition of hydrogen acr noval of water leaving a (into branched/ring structures oss a C=C double bond C=C double bond behind			
21	A	56	⊠B Same molecule: -CH₃ ⊠C Same molecule: -CH₃	☑A C ₆ H ₁₄ molecule shown is 2,3-dimethylbutane and has a different structure. ☑B Same molecule: -CH ₃ methyl group sticking off C ₂ of 5 carbon chain. ☑C Same molecule: -CH ₃ methyl group sticking off C ₂ of 5 carbon chain. ☑D Same molecule: -CH ₃ methyl group sticking off C ₂ of 5 carbon chain.				
22	В	92	Alcohol (old name: alkanols) — OH	Aldehyde (old name: alkanals) -c H	Carboxylic Acids (old name: alkanoic acids) -c OH			
23	В	74	⊠B Propyl ethanoate ∴ pr ⊠C Methyl propanoate ∴ m ⊠D Ethyl propanoate ∴ e	ropanol C3H7OH gfm=60g a ethanol CH3OH gfm=32g a thanol C2H5OH gfm=46g a	nd ethanoic acid CH3COOH gfm=60g nd ethanoic acid CH3COOH gfm=60g and propanoic acid C2H5COOH gfm=74g and propanoic acid C2H5COOH gfm=74g			
24	A	78	☑A Benzene C6H6 and ethy ☑B Benzene is not oxidised ☑C Benzene (bpt. 80°C) is I ☑D Benzene is resistant to	l by hot copper (II) oxide ess volatile than ethanal (b	pt. 20°C)			

				H	B	rBr H		BrBr H		
	25 C 85		H—C≡C-	-Ċ—H H	$\xrightarrow{+Br_2}$ H–C	С=С—С—Н Н		C—C—C—H		
25		85	propy			bromopropene	1,1,2,2-1	etrabromopropane		
				•		nopropene (2 Br -dibromopropan	atoms attached)			
							of propyne with			
						•		ple/double bonds		
			•		condary alcohol					
26	D	87	•		condary alcohol		to a ketone 1not be oxidised			
	U	01			•					
27	~	00		2,2-dimethylpropan-1-ol: primary alcohol and can be oxidised to carboxylic acids thesis Gas is made by the steam reforming of methane and is a mixture of						
27	D	83	•	bon monoxide and hydrogen.						
							ons which allow			
28	C	57		• •	•		electrons to all			
20	C	57	• •		• •		it conduct election it to conduct election			
					s is missing a V		it to conduct ele			
20		71		• •	nts from peptic	-				
29	В	74		• •	s is missing a X	-				
					s is missing a Z	•				
			Enthalpy		efinition tion of one mole of		uation	ΔΗ		
20			Formation				$O_2 \rightarrow Al_2O_3$	-1670 kJ mol ⁻¹		
30	A	56		in thei	r natural state change for the	-	_			
			Combustion	complete	combustion of one	$AI + \frac{3}{4}O_2$	$\rightarrow \frac{1}{2}A _2O_3$	-835 kJ mol ⁻¹		
			V A Lliahan ta		of a substance		<u>auialtan</u>			
24		71		•	e will get you t s why both read	•	•	nixture.		
31	В	/1	Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still found in the mixture. Image: B Equilibrium explains why both reactants are still f							
							only 0.1mol of m	ethanol		
	-		•		fect the positi	•	ium			
32	D	83	•		ange the entha fect the positio	••••	ium			
	-		•		•	•	the position of	equilibrium		
			$\square A OH^{-}$ ions v	vill remov	re H⁺, equilibriu	m moves to ri	ght ∴ more ClO	⁻ produced		
33	Α	54	-		•			ClO ⁻ decreases		
			-				concentration of tion of equilibri	f ClO ⁻ decreases		
						•	d stays at pH=7			
21	C	51			•		and stays at pH			
34	C	54			are diluted and	•	:7			
					d alkali both ha		101			
~ -	~	1			s a strong acid veak acid and or	•	ses. onises ∴ has fev	vest ions		
35	В	62			fully soluble an	•••				
					is a strong alka	•	•			
36		65					ropanoic acid) a	nd a strong alkali		
50	U	05	∴ pH of salt in	n solution	is alkaline (pH)	-7)				


			Write down main species involved	IO ₃ -	\rightarrow I ₂			
		Balance all atoms other than O and H	2IO ₃ -	\rightarrow I ₂				
37	D) 43	Add H_2O to other side to balance O atoms	2IO ₃ -	\rightarrow I ₂ + 6H ₂ O			
			Add H^{\star} to other side to balance H atoms	2IO₃ ⁻ + 12H⁺	\rightarrow I ₂ + 6H ₂ O			
			Add electrons to most positive side to balance charge	2IO3 ⁻ + 12H ⁺ + 10e ⁻	\rightarrow I ₂ + 6H ₂ O			
38	A	80	$Ag^+ + e^- \rightarrow Ag$ $Au^{3+}+3e^- \rightarrow Ag$ $1mol$ $1mol$ $96500C$ $1mol$ $289500C$ $1mol$ $96500C$ $0.33mol$	Ni ²⁺ +2e ⁻ → Ni ^{2mol} 1mol 193000C 1mol 96500C 0.5mol	Cu ²⁺ +2e ⁻ → Cu 2mol 1mol 193000C 1mol 96500C 0.5mol			
39	В	75	A Fission is the splitting of a larger nucleus to form smaller nuclei B Fusion is the joining up of smaller nuclei into a larger nucleus C Proton Capture is when a proton is added to a nucleus D Neutron Capture is when a neutron is added to a nucleus					
40	С	53	There are three different N ₂ molecules form 14 N \equiv ¹⁴ N \equiv ¹⁴ N \equiv ¹⁵	ed from 2 isotopes on 15 N	of nitrogen: 15N			

Long		r Chemistry Marking Scheme				
Qu	Answer	Reasoning				
1a	Boron or carbon	Covalent Networks are found in non-metal elements with high melting points:Typemetalnon-metalElementLiBeBCNOFNem.pt. (°C)181128720753825-210-219-220-249				
1b	Number of protons increases	Other acceptable answers: increased atomic number or greater/positive charge (pull) or greater pull on (outer) electrons				
2a	To allow escape of gas from flask	Other acceptable answers: To prevent loss of any solution/spray/acid from flask or spurting or To stop any solids/liquids getting in/out				
2b(i)	0.018	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{0.18}{10}$ = 0.018 g s ⁻¹				
2b(ii)	0.393 (acceptable: 0.37 to 0.4)	mass of CO_2 given off = 165.00g - 164.86g = 0.14g. no. of mol = $\frac{mass}{gfm}$ = $\frac{0.14g}{44g \text{ mol}^{-1}}$ = 0.00318mol $CuCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$ 1mol 0.00318mol				
За	0.125	∆H=cm∆T = 4.18 × 0.5 × 82 = -171.38kJ -1367kJ is released by burning 1 mol ethanol -171.38kJ released by 1 mol × ^{-171.38} / ₋₁₃₆₇ = 0.125mol				
3b	2 from:	heat lost toincompleteloss (of ethanol)ethanolsurroundingscombustionthrough evaporationimpure				
4a	Equation showing:	$^{89}_{38}$ Sr $\rightarrow ^{89}_{39}$ Y + $^{0}_{-1}$ e				
4 b(i)	no effect/no change	Half-life is not effected by physical state (solid/liquid/gas/solution), chemical state (atom/molecule/ion) or by changes of temperature				
4 b(ii)	5.56g	gfm ⁸⁹ SrCl ₂ = (1×89)+(2×35.5) = 89+71 = 160g 160g of ⁸⁹ SrCl ₂ contains 89g of ⁸⁹ Sr 10g 89g × ¹⁰ / ₁₆₀ = 5.56g				
4c	<u>1</u> 4	Time (days)Fraction remaining0114 $\frac{1}{2}$ 28 $\frac{1}{4}$				
5a	2.76×10 ²¹	From graph: At voltage=20mV, volume = 110cm ³ 1 mol ethanol = 46g = 24 litres = 6.02x10 ²³ molecules 0.110litres = 6.02x10 ²³ molecules x ^{0.110} / ₂₄ = 2.76x10 ²¹ molecules				
5b	CH3CH2OH + O2 ↓ CH3COOH + H2O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

_	Catalyst in different	Catalyst Description					
5c	state to reactants	Homogeneous Catalyst in same state as reactants Heterogeneous Catalyst in different state as reactants					
6a	Ӊ Ӊ H−C−s−s−C−H ⊔ ⊔	Methyl -CH ₃ groups must each be attached to a sulphur and this leaves a bond left for the sulphur to be attached to each other.					
6b(i)	1.47×10 ⁻³	no. of mol Cl₂ = volume x concentration = 0.0294litres x 0.01mol t ¹ = 2.94x10 ⁻⁴ mol 4Cl₂ + H₂S + 4H₂O → SO4 ²⁻ + 10H ⁺ + 8Cl ⁻ 4mol 1mol 2.94x10 ⁻⁴ mol 7.35x10 ⁻⁵ mol 50cm ³ water sample contains 7.35x10 ⁻⁵ mol of Cl₂ 1000cm ³ water sample 7.35x10 ⁻⁵ mol x ¹⁰⁰⁰ / ₅₀ = 1.47x10 ⁻³ mol t ⁻¹					
6b(ii)	2 marks for:	 First Mark: Permanent dipole-permanent dipole attractions or polar-polar attractions/forces (¹/₂mark) weak intermolecular bonds/forces (¹/₂mark) Second Mark: Mention of difference in electronegativities or indication of polar bonds or indication of permanent dipole (1mark) f London dispersion forces mentioned for 1st Mark:					
7α	w=9 z=6 y=2 z=2	ElementCHNONumber9622Number96226 carbons in benzene ring3 hydrogens on benzene ring plus 2 carbons in N=C=O groups3 hydrogens on benzene ring plus three in -CH3 group2 nitrogens off benzene ring off benzene ring					
7b	monomers have added across the (N=C) double bond	Other acceptable answers: no elimination of a small molecule (such as water) or only one product molecule formed or joined across the (N=C) double bond					
7c	Dotted line between N and H between chains.	Hydrogen bonding takes place between: N-H bonds O-H bonds H-F bonds					
8a	Amide link or Peptide link	$ \begin{array}{c c} O H & O H \\ \parallel & \parallel \\ -C - N - & -C - N - \\ Amide link & Peptide link \end{array} $					
8b	diagram showing:	О NH2 С-СН-СН2-С НО ОН					
8c	essential	Amino acids which cannot be made by the body are described as essential amino acids and must be consumed through our diet.					
8d	one answer from:	Use a condenser wet paper towel cold finger test tube					
9a	Answer to include:	$(\frac{1}{2} \text{ mark})$ Use Bromine solution $(\frac{1}{2} \text{ mark})$ Oleic acid decolourises or stearic acid does not decolourise					

9b	Octadec-9,12,15-trienoic acid	Octadec	-9,12,15	-trieno	oic acid
70		18 Carbon Main Chain	Position of C=C double bonds	Three C=C double boinds	Carboxyl -COOH group on C1
9с	-C O ⁻ Na ⁺	Sodium hydroxide NaO The ionic portion of the hydrocarbon part of th	e molecule is ionic a	and water solubl	e. The
10a	air		tural gas) sodium chlo (salt)		carbonate ^{halk)}
10ь	methylmethanoate		H H H H H H H H H H H H	+ H2O H ethylmethanoata H -C-H H methy H	
10c	70%	1mol 46g 1.38g	· · · ·	HCONH ₂ 1mol 45g 45g x ^{1.38} = 1.35g (Th	/46 eoretical)
11a(i)	3-methylbutan-2-ol	3-me Methyl side grou		bons Single bonds -O	-Ol H hydroxyl roup on C ₂
11a(ii)	Diagram of 2-methylpentan-1-ol		א אייר א א א א-2-2-2-4 א א א א	 С ^н ССн - Он	
11b(i)	4BF3 + 3NaBH4 ↓ 2B2H6 + 3NaBF4	4BF3 + 3Nal	BH4 ———		+ 3NaBF4

11D(ii) -2168 $@x3$ $3H_2 + 1\frac{1}{2}O_2 \rightarrow 3H_2O$ $\Delta H= -858$	kJ mol⁻ ŀ kJ mol J mol⁻¹ kJ mol⁻¹									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ŀkJ mol J mol ⁻¹ kJ mol ⁻¹									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	J mol ⁻¹ kJ mol ⁻¹	 -1								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kJ mol⁻									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	kJ mol⁻									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								
$\begin{array}{c} Add \\ \bullet' \bullet \bullet' \bullet \bullet \end{array} B_2 H_6 \bullet 3O_2 \to B_2 O_3 \bullet 3H_2 O \Delta H = -2168 \end{array}$		-								
$0'+Q'+\Theta \qquad \qquad B_2H_6+3O_2 \rightarrow B_2O_3+3H_2O \Delta H=-2168$,,								
0'+0'+6		. 1								
$1m_{1} P_{-} H_{2} = (F_{V} 1 \cap R)_{+} (Q_{V} 1) = F_{1} + Q_{2} = 422$	KJ mol	-1								
$11101 D_5 \Gamma_19 - (0x10.0) T(7x1) - 0477 - 030$										
11 142444 kT 1mol 63g = -9037kJ										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
= 143 444 kJ										
To allow the potato To allow buffer To allow the	To all	ow +	ha							
12a One answer from: discs/catalase to to soak/diffuse enzyme/potato to reach	enzyme									
reach the prior the into the polato the same prior the	to accl	•								
buffer. disc. surrounding solution.										
12b by drogen peroxide	1 peroxi	ide:								
12b hydrogen peroxide $H_2O_2 \longrightarrow H_2O + \frac{1}{2}O_2$										
12	changes	its sh	ape							
12c One answer from: Interizyme is destroyed too acidic for enzyme to function enzyme has a construction enzyme has a construction of the enzyme has a constructine of the enzyme has a construction o										
Q=It = 5 × (32×60) = 9600C										
$2F^{-} \longrightarrow F_{2} + 2e^{-}$										
13a 1.89g 1mol 2mol										
38g 193000C										
$^{9600}/_{193000} \times 38g$ 9600C										
=1.89g	_ :	((<u> </u>							
Exothermic or Exothermic or			Γ4							
1.3 b (i)	\therefore Decrease in temperature favours forward reaction which forms C_2F_4									
neal given out in deel case in religionaria e diways favours me exomeriment	A decrease in temperature always favours the exothermic reaction \therefore Forward Reaction (Formation of C ₂ F ₄) is exothermic									
• Increasing pressure favours the pressure-reducing r	reactior	1								
• Reverse reaction reduces pressure (2mol of gas \rightarrow 1)	mol of <u>c</u>	gas)								
⁸ ∴ Increase in pressure decreases concentration of C ₂ F ₄										
depletion (brook down, Chlansfluencemberg brooks down orang, allowing bormfulue	/. liaht +	thro	uah							
			<u>.</u>							
	12	13	14							
13C of the ozone layer to cause skin cancer.										
ISC of the ozone layer to cause skin cancer. pH 0 1 2 3 4 5 6 7 8 9 10 11		0-13	10 ⁻¹⁴							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1							
I SC of the ozone layer to cause skin cancer. $14a(i)$ 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 $14a(i)$ 1×10^{-5} or 10^{-5} $[H^*]$ 1 10^{-1} 10^{-2} 10^{-4} 10^{-5} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-10}	¹¹ 10 ⁻¹² 1	10-1	T							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	¹¹ 10 ⁻¹² 1	10-1	7							
I 3C of the ozone layer to cause skin cancer. I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ \overrightarrow{pH} 0 1 2 3 4 5 6 7 8 9 10 11 I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ $\overrightarrow{[H^+]}$ 1 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹⁰ <t< th=""><th>¹¹ 10⁻¹² 1 -3 10⁻² 1</th><th></th><th></th></t<>	¹¹ 10 ⁻¹² 1 -3 10 ⁻² 1									
I SC of the ozone layer to cause skin cancer. I 4a(i) 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 I 4a(i) 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 $(mol 1^{\circ})$ 10^{-5} 10^{-5} 10^{-5} 10^{-7} 10^{-8} 10^{-9} 10^{-7} 10^{-8} 10^{-9} 10^{-7} 10^{-6} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} 10^{-4} 10^{-7} 10^{-6} 10^{-7} $10^{$	¹¹ 10 ⁻¹² 1 -3 10 ⁻² 1									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	¹¹ 10 ⁻¹² 1 ⁻³ 10 ⁻² 1 NH4 ⁺ ior	าร								
I 3C of the ozone layer to cause skin cancer. I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ \overrightarrow{pH} 0 1 2 3 4 5 6 7 8 9 10 11 I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ \overrightarrow{pH} 0 1 2 3 4 5 6 7 8 9 10 11 I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ \overrightarrow{pH} 0 1 2 3 4 5 6 7 8 9 10 11 I 4a(i) 1×10 ⁻⁵ or 10 ⁻⁵ \overrightarrow{pH} 1 10 ⁻¹ 10 ⁻² 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻	¹¹ 10 ⁻¹² 1 ⁻³ 10 ⁻² 1 NH4 ⁺ ior	าร	1							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{11}{10^{-12}} \frac{10^{-12}}{10^{-2}} \frac{1}{10^{-2}}$ $NH_4^+ \text{ ior}$ concentro	ns ation	1							
I 3C of the ozone layer to cause skin cancer. 14a(i) 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 $[H^+]$ 1 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-10} 10^{-7} 10^{-6}	$\frac{11}{10^{-12}} \frac{10^{-12}}{10^{-2}} \frac{1}{10^{-2}}$ $NH_4^+ \text{ ior}$ concentro	ns ation	1							
I 3C of the ozone layer to cause skin cancer. 14a(i) 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 14a(i) 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 $[14a(i)]$ 1×10^{-5} or 10^{-5} pH 0 1 2 3 4 5 6 7 8 9 10 11 $[01^{+1}]$ 1 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 10^{-10} 1	$\frac{11}{10^{-12}} \frac{10^{-12}}{10^{-2}} \frac{1}{10^{-2}}$ $NH_4^+ \text{ ior}$ concentro	ns ation	1							

